Contoh Soal Keliling Lingkaran 1
Keliling lingkaran dengan jari-jari 14 cm adalah...
a. 22 cmb. 44 cmc. 88 cmd. 110 cm
Jari-jari = r = 14 cmKeliling lingkaran = 2πrK = 2 x (22/7) x 14 cmK = 88 cm
Maka jawaban yang benar adalah C.
Rumus Keliling Lingkaran
Keliling lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari atau radius lingkaran (r) atau diameter lingkaran (d). Rumus keliling lingkaran adalah K = 2πr atau K = πd. K merupakan lambang keliling lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.
Jika diketahui diameter, maka rumus keliling lingkaran adalah K = πd
Jika diketahui jari-jari, maka rumus keliling lingkaran adalah K = 2πr
Contoh Soal Perhitungan Keliling Lingkaran
Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:
Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.
Keliling = πd = 3,14 x 15 cm = 47,1 cm.
Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.
Jadi, diameter lingkaran tersebut adalah 8 cm.
Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.
Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.
Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.
Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.
Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.
Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.
Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/
Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 10 cm = 62,8 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15 cm = 94,2 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 36 cm = 226,08 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15,5 cm = 97,34 cm.
Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.
Keliling = 2πr = 2 x 3,14 x 15 mm = 94,2 mm.
Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.
Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.
Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.
Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?
Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?
Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!
Sifat-Sifat Lingkaran
Dirangkum dari Buku Ajar Geometri Dan Pengukuran Berbasis Pendekatan Saintifik, sifat-sifat lingkaran adalah:
Demikian pembahasan tentang rumus luas lingkaran, cara menghitung, dan contoh soal.
Rumus keliling lingkaran digunakan untuk menghitung panjang antara titik A di garis keliling lingkaran ke titik itu kembali. Begini cara menghitungnya dengan rumus keliling lingkaran.
Dikutip dari Pasti Bisa Matematika untuk SD/Mi Kelas VI oleh Tim Tunas Karya Guru, kamu perlu mengenal unsur lingkaran untuk menghitung keliling lingkaran. Unsur lingkaran yang digunakan dalam rumus keliling lingkaran yaitu jari-jari atau radius (r) dan diameter atau garis tengah (d).
Unsur lingkaran di antaranya:
SCROLL TO CONTINUE WITH CONTENT
- Titik pusat (titik O), yaitu titik yang terletak di tengah-tengah lingkaran- Jari-jari atau radius (r), yaitu garis dari titik pusat lingkaran ke lengkungan lingkaran- Diameter (garis tengah), yaitu garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat- Busur, yaitu garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang pada lengkungan tersebut- Tali busur, yaitu garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran- Juring, yaitu luas daerah dalam lingkaran yang dibatasi dua buah jari-jari lingkaran dan sebuah busur yang diapit kedua jari-jari lingkaran tersebut
Unsur dan Bagian Lingkaran
Merujuk pada buku Matematika Plus oleh Husein Tampomas, jar-jari lingkaran adalah ruas garis yang menghubungkan suatu titik pada lingkaran dengan titik pusatnya. Jari-jari lingkaran dapat didefinisikan sebagai jarak suatu titik pada lingkaran dengan titik pusatnya.
Perhatikan gambar berikut.
Unsur dan Bagian Lingkaran (Matematika Plus/Penerbit Yudhistira)
Jari-jari lingkaran dilambangkan dengan r atau R. Pada gambar tersebut, ruas garis OA = r, OB = r, dan ON = r adalah jari-jari lingkaran dengan pusat O.
Tali busur adalah ruas garis yang menghubungkan dua titik pada lingkaran. Pada gambar tersebut, ruas garis CD dan AB adalah suatu tali busur. Diameter atau garis tengah adalah tali busur yang melalui titik pusat lingkaran.
Dalam gambar tersebut, ruas garis AB adalah diameter pada lingkaran O. Dalam hal ini, dikatakan bahwa A dan B berhadapan diametral. Diameter lingkaran dilambangkan dengan d atau D. Hubungan jari-jari (r) dan diameter (d) pada suatu lingkaran dirumuskan sebagai berikut:
r = 1/2 d atau d = 2r
Apotema adalah ruas garis yang ditarik dari titik pusat suatu lingkaran tegak lurus pada sebuah tali busur. Dapat disimpulkan bahwa apotema adalah jarak titik pusat lingkaran dengan tali busurnya. Pada gambar, ruas garis OM adalah suatu apotema.
Anak panah adalah ruas garis perpanjangan apotema sampai pada busur lingkaran. Garis MN dalam gambar diatas adalah suatu anak panah.
Sudut Pusat dan Keliling Lingkaran
Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.
Sudut keliling lingkaran dibedakan menjadi:
Contoh Soal dan Pembahasan
Setelah tahu rumus-rumus lingkaran, inilah saatnya mengaplikasikan rumus tersebut ke dalam soal. Coba jawab soal tanpa scroll jawabannya, ya! Yuk, bersiap coret-coret dan simak contoh soalnya di bawah ini!
Sebuah lingkaran memiliki jari-jari 7 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 22/7.
Maka, keliling lingkaran tersebut adalah 44 cm dan luasnya 154 cm².
Sebuah lingkaran memiliki diameter 14 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 3,14.
L = 153,86 cm² atau 154 cm²
Maka, keliling lingkaran tersebut adalah 43,96 cm dan luas lingkarannya adalah 152,86 cm².
Sebuah lingkaran memiliki keliling 31,4 cm. Hitung jari-jari dan luas lingkaran tersebut. Gunakan π = 3,14.
Maka, jari-jari lingkaran tersebut adalah 5 cm dan luas lingkarannya adalah 78,5 cm².
Itu dia seluk-beluk perihal bangun datar bernama lingkaran, yang wujudnya kerap mengingatkan pada bola, uang koin, tutup botol, dan masih banyak benda-benda familiar di sekitar kita.
Nah, buat Skollamate yang ingin memperkaya ilmu Matematika dengan cara yang menyenangkan, kamu bisa menyimak pembahasannya lebih lanjut di aplikasi Skolla. Nggak cuma soal lingkaran dan matematika, tapi ada banyak materi lainnya yang bisa kamu pelajari di sana. Cek aplikasi Skolla untuk mulai belajar!
Inverter Dan Rumus Menghitung Putaran Motor
Mata pelajaran matematika tentang geometri mengajarkan rumus bangun datar, termasuk menghitung luas lingkaran. Lingkaran merupakan bangun datar yang memiliki satu sisi lengkung dan membentuk sudut 360 derajat. Jarak setiap titik pada sisi luar lingkaran dengan titik pusat lingkaran adalah sama dan disebut dengan jari-jari (r) atau radius.
Ukuran jari-jari lingkaran sama dengan setengah diameter. Definisi diameter adalah segmen garis pada lingkaran yang melalui pusat lingkaran. Rumus diameter lingkaran yaitu d = 2 × r.
Dalam bangun lingkaran, keliling lingkaran adalah jarak dari suatu titik pada lingkaran dalam satu putaran hingga kembali ke titik semula. Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya akan mendekati 3,14159265358979… atau disingkat menjadi 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π).
Rumus Luas Lingkaran
Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya. Luas lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari lingkaran (r). Rumus luas lingkaran adalah L = π × r × r . L merupakan lambang luas lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.
Sebuah lingkaran memiliki jari-jari 7 cm. Tentukan luas lingkaran tersebut!
Maka luas lingkaran adalah:
Selain rumus satu lingkaran, terdapat variasi rumus lainnya sebagai berikut.
Rumus Luas Seperempat Lingkaran
Rumus luas seperempat lingkaran adalah L = ¼ × luas lingkaran atau ¼ × π × r × r.
Jika garis tengah sebuah lingkaran 16 m, maka luas seperempat lingkarannya adalah…
Diketahui garis tengah atau diameter sepanjang 16 m, maka jari-jarinya adalah 8 m.
Luas ¼ lingkaran = ¼ × π × r × r = ¼ × 3,14 × 8 × 8 = 50,24 m2.
Maka, luas seperempat lingkaran tersebut adalah 50,24 m2.
Rumus Keliling Lingkaran
Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.
Baca berita dengan sedikit iklan, klik di sini
Adapun rumus keliling lingkaran sebagai berikut: